ECE 260			
Name:			
Date:			

Laboratory 6 – Operational Amplifiers

Purpose: In this lab, you will design amplifiers based on the 741 integrated-circuit op-amp.

Equipment Required

- o Breadboard and variable power supply
- o FLUKE Hand-held Digital Multimeter (DMM)
- Various resistors
 - \circ Two 1 kΩ resistors
 - \circ 4.7 k Ω resistor

Learning Objectives

- 1. Discuss the purpose of an op-amp
- 2. Determine inverting and non-inverting circuit configurations
- 3. The effect of load resistances on an op-amp circuit

Theory

An operational amplifier (op-amp) is a device with two inputs and a single output. The output of the amplifier is given by $V_{out} = A (V_p - V_n)$, where A is the open-loop voltage gain (i.e. gain without feedback), V_p is the non-inverting input voltage, and V_n is the inverting input voltage. Typically, the open-loop voltage gain A is on the order of 10^3 to 10^6 .

One important feature of op-amps is that a resistor can be placed between the output node and the inverting input to provide feedback and adjust amplification. While operating in its linear region ($-V_{cc} < V_{out} < +V_{cc}$), the op-amp adjusts its output current such that the voltage difference between the two inputs is nearly zero (i.e. $V_p = V_n$). When the output swings to $V_{out} = \pm V_{cc}$, however the op-amp is operating in its saturation region, and it cannot balance V_p and V_n . Our general-purpose 741 op-amp requires two power supply voltages, ± 15 V, for normal operation.

The 741 op-amp is a bipolar-junction-transistor-based amplifier, has an input resistance of about 2 M Ω . Because of this high input resistance, only a very small current (on the order of a μA) flows into either input of the op-amp and is essentially zero when we model it as an ideal op-amp (open-loop voltage gain A goes to infinity.

 I_p = current flowing into $V_+(V_p)$ I_n = current flowing into $V_-(V_n)$

Figure 1: An operational amplifier

Operational amplifier circuits

Non-Inverting Amplifier

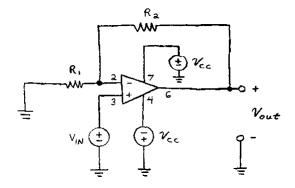


Figure 2 - Non-inverting Amplifier

The operational amplifier of Figure 2 is called a *non-inverting amplifier*. When a voltage is applied between the V_p terminal (pin 3) and ground, the op- amp output V_{out} (pin 6) will tend to become positive. This increase in voltage, which is measured relative to ground, is attenuated by the voltage divider formed by R_1 and R_2 and fed back to the op-amp's V_n terminal (pin 2), where it also appears as a voltage with respect to ground. The positive voltage applied between V_n and ground by V_{out} counteracts the increase in V_{out} by tending to force V_{out} in the negative direction. The output voltage will thus reach an equilibrium in which the voltage of the V_n terminal relative to ground rises to almost the same value as the voltage applied between the V_p terminal and ground. In this state, with $V_n = V_p$, and with $V_n = V_{out} (R_1 + R_2) / R_1$, the op-amp output becomes

$$V_{out} = V_{in} * (R_1 + R_2) / R_1$$

When V_{out} reaches the value in this equation, the V_n and V_p terminals acquire nearly the same voltage. This condition is sometimes called a *virtual short circuit*.

Inverting Amplifier

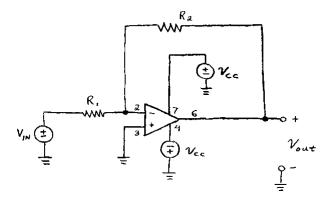


Figure 3 - Inverting Amplifier

The circuit of Figure 3 is called an *inverting amplifier*. The current flowing from V_{in} into R_1 must also flow through R_2 , because essentially zero current flows into the high resistance of the V_n terminal (pin 2) of the op-amp. When a V_{in} is applied, the output voltage of the op-amp adjusts itself until the voltage between V_n and V_p falls toward zero. With the V_p terminal (pin 3) grounded, the V_1 terminal (pin 2) also remains at ground potential, causing all of V_{in} to appear across R_1 . The current flowing through R_1 determined by Ohm's Law, thus becomes $i_1 = V_{in}/R_1$. This same current must flow as i_2 through R_2 . With V_n at ground, the op-amp voltage becomes

$$V_{out} = -i_2R_2 = -V_{in} * (R_2/R_1)$$

The factor $-R_2/R_1$ multiplying V_{in} is called the *gain* of the amplifier. This particular op- amp circuit has a negative gain. Positive increases in V_{in} lead to negative increases in V_{out} ; conversely, negative increases in V_{in} lead to positive increases in V_{out} . The op-amp responds to any voltage difference between its V_n and V_p terminals by increasing the magnitude of V_{out} .

Procedure

1. Non-inverting Amplifier with Given Resistors

- Obtain two resistors, $R_1 = 1 \text{ k}\Omega$ and $R_2 = 1 \text{ k}\Omega$. Measure the values of these resistors and record their values in Table 1.
- Build the circuit of Figure 2 with a 741 op-amp and these resistors. Refer to the datasheet in the appendix for the op-amp pin diagram. (Note that Vcc- is VEE on the datasheet.)
- Note: You'll need to place the op-amp across one of the gaps along a terminal strip such that you don't short any of the op-amp's pins together by placing them in the same row of 5 holes. Here is a checklist of the necessary connections for your circuit:
 - \Rightarrow R₁ to op-amp pin 2 and ground (one of the blue outer rails)
 - \Rightarrow op-amp pin 3 to variable power supply
 - \Rightarrow op-amp pin 4 to -V_{cc} power supply (-15 or -12 V)
 - \Rightarrow op-amp pin 7 to +V_{cc} power supply (+15 or +12 V)
 - \Rightarrow R₂ to op-amp pin 2 and op-amp pin 6
 - ⇒ ground bus to ground terminal of power supply
- Calculate the gain of this op-amp circuit (with your measured resistor values) and record in Table 1.

Table 1

Parameters	Calculated Values	Measured Values
R ₁		
R ₂		
Gain		

- Set the variable power supply, $V_{in} = 1$ V. Verify this value with the voltmeter (*always use verified values in your tables*).
- Measure V_{out} (pin 6). Record this value. Calculate V_{out}/V_{in} and record this value as well.
- Repeat for $V_{in} = 2V$, 4V, 8V, and 16V

Table 2

V _{in}	Measured Values				
	V _{in}	V _{out}	V _{out} /V _{in}		
1					
2					
4					
8					
16					

	V _{in} ? Why or why not?						
-							

2. Non-inverting Amplifier Design

- Design a non-inverting amplifier with a gain of approximately 4. *Show how you determine the necessary resistor values*.
- Measure the required resistor values and record them in your notebook
- Build the circuit with a 741 op-amp and these resistors. (Again, note that V_{cc} is V_{EE} on the data sheet).
- Apply +12V (or +15V) to V_{cc+} (pin 7) and -12V (or -15V) to V_{cc-} (pin 4).
- Set $V_{in} = 0.5V$. Verify this with a voltmeter (always use verified values in your tables).
- Measure V_{out}. Record this value in Table 3. Calculate V_{out}/V_{in} and record this value as well.
- Repeat for $V_{in} = 1V, 1.5V, 2V, 3V$.

Table 3

V _{in}	Measured Values				
	V _{in}	V _{out}	V _{out} /V _{in}		
0.5					
1.00					
1.50					
2.00					
3.00					

Does the experimental gain (v_{out}/v_{in}) match your desired gain, for all values of v_{in} ? Why not?						vvny

3. Inverting Amplifier with Given Resistors

- Obtain two resistors, $R_1 = 1.2 \text{ k}\Omega$ and $R_2 = 5 \text{ k}\Omega$. Measure the values of these resistors and record their values in Table 4.
- Build the circuit of Figure 3 with a 741 op-amp and these resistors. Refer to the datasheet in the appendix for the op-amp pin diagram.
- Calculate the gain of this op-amp circuit (with your measured resistor values) and record in Table 4.

Table 4

Parameters	Calculated Values	Measured Values
R ₁		
R ₂		
Gain		

What do you expect the value of Vout for a given value of Vin?

- Set the variable power supply, $V_{in} = 1 \text{ V}$. Verify this value with the voltmeter.
- ullet Measure V_{out} . Record this value in Table 5. Calculate V_{out}/V_{in} and record this value as well.
- Repeat for $V_{in} = 1.5V, 2V, 2.5V, and 3V$

Table 5

V _{in}	Measured Values				
	V _{in}	V _{out}	V _{out} /V _{in}		
1					
1.5					
2					
2.5					
3					

	Does the experimental gain (V_{out}/V_{in}) match the gain you calculated earlier, for all values of					
Vin? WI	ny or why not?					

4. Inverting Amplifier Design

- Design a inverting amplifier with a gain of approximately -1. *Show how you determine the necessary resistor values*.
- Measure the required resistor values and record them in your notebook
- Build the circuit with a 741 op-amp and these resistors. (Again, note that V_{cc} is V_{EE} on the data sheet).
- Apply +12V to V_{cc+} (pin 7) and -12V to V_{cc-} (pin 4).
- Set $V_{in} = 0.5V$. Verify this with a voltmeter (always use verified values in your tables).
- Measure V_{out} . Record this value in Table 6. Calculate $V_{\text{out}}/V_{\text{in}}$ and record this value as well.
- Repeat for $V_{in} = 1.5V$, 2.5V, 3.5V, 4.5V.


Table 6

V _{in}	Measured Values				
	V _{in}	V _{out}	V _{out} /V _{in}		
0.5					
1.5					
2.5					
3.5					
4.5					

Does the experimental gain (V_{out}/V_{in}) match your desired gain, for all values of V_{in} ? Why or why not?						

5. Inverting Amplifier with a Load Resistor

• Redraw figure 3 with a load resistor

ullet Determine V_{out} as a function of V_{in} . Show this derivation in the notes.

Is this equation you used to derive V_{out} different from the equation derived for an amplifier circuit without a load? Why or why not?

Using the inverter circuit you designed in part 4...

• Obtain a 4.7 k Ω resistor. Measure and record its value.

Table 7

Parameters	Calculated Value	Measured Value
R _{load}		

- Connect this resistor between the op-amp output (V_{out}) and the ground bus (be sure the ground bus is connected to ground on your power supply).
- Apply +12V to V_{cc+} (pin 7) and -12V to V_{cc-} (pin 4).
- Set $V_{in} = 0.5V$. Verify this with a voltmeter (always use verified values in your tables).
- Measure V_{out} . Record this value in Table 8. Calculate V_{out}/V_{in} and record this value as well.
- Repeat for $V_{in} = 1.5V$, 2.5V, 3.5V, 4.5V.

Table 8

V	Measured Values			
V _{in}	V _{in}	V _{out}	V _{out} /V _{in}	
0.5				
1.5				
2.5				
3.5				
4.5				

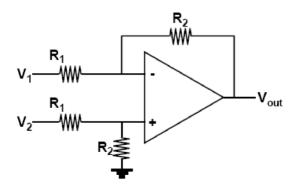
Does the load resistor affect the gain of the amplifier? Why is this useful?				

6.	Operational	Amplif	ier Non-	Idealities
----	--------------------	---------------	----------	-------------------

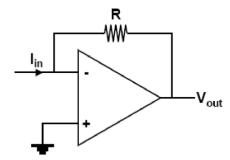
What is the voltage difference $V_p - V_n$ for an ideal op-amp? Record your results in Table 9. What are the input currents (I_p and I_n) for an ideal op-amp? Record your results in Table 9. Using the same inverting amplifier circuit from Part 5...

• Measure the voltage difference between V_p and V_n (pins 3 and 2). Record this value in Table 9.

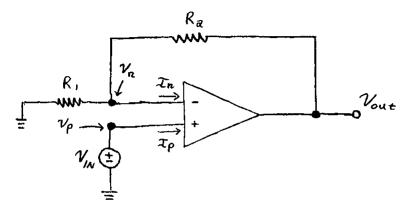
Does this voltag	ge reading match your answer above? Why or why not?
	sure the currents flowing into these op-amps (I _p and I _n). Record these values in e.9. <i>Be careful not to blow the fuse in the multimeter!!</i>
Do these curren	nt readings match your answer above? Why or why not?


Table 9

Parameter	Expected Value	Measured Value
V+- V.		
I ₊		
l.		


Questions:

(1) Why do we need V_{cc} ? What is its function?	
(2) When does an op-amp operate within its <i>linear</i> region? When does an op-amp operate in its <i>saturation</i> regions?	

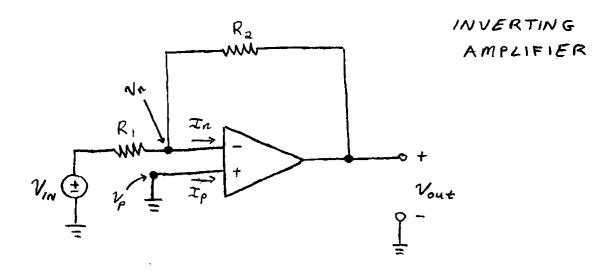

(3) What is the purpose of the following circuit? (Determine V_{out} as a function of V_1 , V_2 , R_1 , and R_2 .)

(4) What is the purpose of the following circuit? (Hint: What is the *input* to the "system" and what is the *output* of the "system"?)

NON-INVERTING AMPLIFIER

ideal characteristics:
$$In = Ip = 0$$

$$V_n = V_p$$


$$KCL @ node Vn : \frac{V_n - 0}{R_1} + \frac{V_n - V_{out}}{R_2} = 0$$

$$\frac{\mathcal{V}_{iN}}{R_{i}} + \frac{\mathcal{V}_{iN} - \mathcal{V}_{out}}{R_{2}} = \emptyset$$

$$R_{2}\mathcal{V}_{iN} + R_{1}(\mathcal{V}_{iN} - \mathcal{V}_{out}) = \emptyset$$

$$R_{2}\mathcal{V}_{iN} + R_{1}\mathcal{V}_{iN} = R_{1}\mathcal{V}_{out}$$

$$\frac{V_{out}}{V_{iN}} = \frac{R_2 + R_1}{R_1}$$

ideal characteristics:
$$Ip = In = 0$$

$$V_p = V_n$$

$$KCL @ node V_n: \frac{V_n - V_{in}}{R_i} + \frac{V_n - V_{out}}{R_2} = 0$$
@ node $V_p: V_p = 0$

$$\frac{O - V_{iN}}{R_{i}} + \frac{O - V_{out}}{R_{2}} = 0$$

$$- R_{2} V_{iN} = R_{i} V_{out}$$

$$\frac{V_{out}}{V_{in}} = \frac{-R_{2}}{R_{i}}$$

NOTES

HA17741/PS

General-Purpose Operational Amplifier (Frequency Compensated)

HITACHI

ADE-204-043 (Z) Rev. 0 Dec. 2000

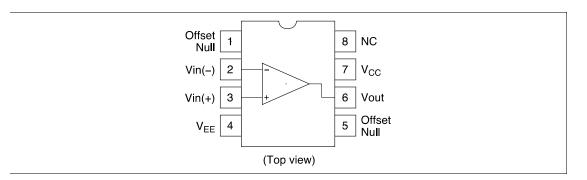
Description

The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields.

Features

• High voltage gain : 106 dB (Typ)

• Wide output amplitude : $\pm 13 \text{ V (Typ)}$ (at $R_L \ge 2 \text{ k}\Omega$)


Shorted output protection

- · Adjustable offset voltage
- Internal phase compensation

Ordering Information

Application	Type No.	Package
Industrial use	HA17741PS	DP-8
Commercial use	HA17741	_

Pin Arrangement

