ECE 260		
Name:		
Date:		

Laboratory 0 – Review of Math and Calculator Fundamentals

The following material is meant as a review of the mathematical fundamentals you will need for performing calculations in the laboratory experiments. The following calculations are meant to be performed both with and without a calculator.

A. Powers of 10

You will need to work with very small and very large numbers which will require the use and understanding of powers of 10. If you cannot perform these operations, please find a qualified source to review how to do them.

Perform the following operations by hand. Do not use a calculator.

1.
$$4,500,000 + 230,000 + 2,000 =$$
_____ x 10^3

2.
$$0.03 + 0.006 - 0.2 =$$
 _____x10³

3.
$$3100 + 0.01 \times 10^2 - 31,000 \times 10^{-4} = \times 10^3$$

4.
$$(45,000)(3,000) =$$
_____x10⁹

5.
$$(-2.3 \times 10^{-2})(-5 \times 10^{4})(-0.003 \times 10^{5}) =$$
______ $\times 10^{0}$

6.
$$0.000072/0.0008 =$$
_____x 10^{-3}

7.
$$10000/(2x10^8) = ____x10^{-3}$$

8.
$$(2x10^3)^3 =$$
____x 10^9

9.
$$(0.00002)^3 =$$
_____x 10^{-15}

B. Prefixes

The following list is the prefixes used when expressing numbers in *engineering* notation:

$$10^{12} = tera (T)$$

$$10^9 = giga (G)$$

$$10^6 = mega (M)$$

$$10^3 = kilo (k)$$

$$10^{-3} = milli (m)$$

$$10^{-6} = micro (\mu)$$

$$10^{-9} = nano (n)$$

$$10^{-12} = pico(p)$$

For engineering notation, the value of the coefficient must be between 1 and 999 and the power of the base 10 must be a multiple of 3 (it can also be 0).

Apply the most appropriate prefix to convert each of the following quantities into engineering notation:

Example: $0.003 = 3x10^{-3}$ and $124580 = 124.58x10^{3}$

15. 0.00003kV = _____

16. 0.000021kV = _____

17. 7,600,000 Ω = _____

18. 760,000 Ω = _____

19. 5000 pF = _____

20. 0.5 nF = _____

C. Square and Cube Roots

Use a calculator

21. $\sqrt{8.1} =$

22. $\sqrt[3]{3000} =$

23. $\sqrt{0.000054}$ = _____

D. Exponential Functions

Use a calculator

24. *e* ^{3.1} = _____

25. $e^{0.2} =$

26.
$$e^{-0.003} =$$

27.
$$1/e^{-4} =$$

E. Algebraic Manipulations (show all work)

28.
$$P = I^2 R$$
, solve for R and I

29. 40R = 4R + 4, solve for R

30.
$$\frac{1}{V_S} = \frac{1}{V_1} + \frac{1}{5V_1}$$

31.
$$F = \frac{kQ_1Q_2}{r^2}$$
, solve for Q_2 and r

F. Calculator Fundamentals

Using a calculator, convert to engineering notation

34. 0.0009 = _____

35. 330 = _____

36. 0.000000000000 = _____

37. 0.01 = _____

38. 1.01 = _____

39. 335 = _____

40. 0.000045 = _____

Use a calculator and express answers in engineering notation

41. 50E3 – 2.2E4 + 0.08E6 = _____

42. $\frac{(4x10^{-6})^2}{8x10^3} =$ ______

43. $0.008 \times (6 \times 10^3) + 5200 \times 10^{-3} - 200 = -3 - 3 =$

44. 30,000 x $\sqrt{(3000)^4}$ = _____

45. $e^{\sqrt{8/3}} =$

46. $e^{e^{-3}} =$

47.
$$\frac{86E3 \times e^{-2}}{2E4 + e^7} =$$

48.
$$20E2 - 2 + \left(\frac{6}{2E2}\right) = \underline{\hspace{1cm}}$$

49.
$$\frac{\sqrt[3]{3^2}}{2+3^2} = \underline{\hspace{1cm}}$$

50.
$$\frac{1}{(5-1)^2} =$$